

 Is possible to program in a correct way?

(7500 / 6) / 5 =
250 lines/man/year

Windows has about 50
mills lines of code

 Is possible to program in a correct way?

 Security by correctness

 Security by isolation

 Security by obscurity

 Security by randomization

 Why choosing?

 According to the SDL
 Designed to stop the attacker
 If the countermeasure does not stop the

attacker, it is a vulnerable
countermeasure.

 Designed to slow the attacker

 Effective
 Low - effort

 Can be located at…
 … the compiler
 … the operating system
 … the hardware

LLVM / CLANG

 -FORTIFY_SOURCE (buffer overflow detection).
 works by computing the number of bytes that are going

to be copied
 provides buffer overflow checks for the following

functions (and wide character variants):
 memcpy, mempcpy, memmove, memset, strcpy,

stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,
snprintf, vsnprintf, gets.

 argument consistency is checked

 -D_FORTIFY_SOURCE=1 checks that shouldn't change the
behavior of conforming programs are performed. Checks at
compile-time only.

 -D_FORTIFY_SOURCE=2 some more checking is added,
but some conforming programs might fail. Checks at
compile-time and runtime.

 Enable warnings:

 -Warray-bounds: Compile time out of bounds checks
 -Wformat=2 -Wformat-security: Format string warnings

 /WE4789

 Warns about buffer overrun when specific C run-time
(CRT) functions are used, parameters are passed, and
assignments are performed, such that the data sizes are
known at compile time. This warning is for situations
that might elude typical data-size mismatch detection.
 strcpy, memset, memcpy, wmemcpy

 Replace with secure version of the functions

#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES 1
#define _CRT_SECURE_CPP_OVERLOAD_STANDARD_NAMES_COUNT 1

 The compiler place a value before the return address when
a function is called and check that the value has not
changed when the function finalize

 Terminator Canaries
 Random Canaries
 Random XOR Canaries

 Deprecated:
 StackGuard
 ProPolice (reorders variables)

 -fstack-protector: Buffer size > 8B && functions that call alloc

 -fstack-protector-explicit: stack_protect attrb.

 -fstack-protector-all: All

 -fstack-protector-strong: paranoid conditions

 AddressSanitizer (en gcc desde 4.8)
 -fsanitize=address

 UndefinedBehaviorSanitizer (UBSan)
 -fsanitize=undefined All kind of undefined behaviours
 -fsanitize=integer undefined or suspicious integer behavior
 -fsanitize=nullability While violating nullability does not have

undefined behavior, it is often unintentional
 -fsanitize=bounds Detects out-of-bounds access of arrays.
 -fsanitize=bounds-strict Enables strict checking

 ThreadSanitizer
 -fsanitize=thread Detects data races

 Microsoft Visual C++ 2003
 /GS Stack-Based Buffer Overrun Detection

 Microsoft Visual C++ 2005
 Buffers reordering
 Parameter Shadowing

 Microsoft Visual C++ 2005 SP1
 #pragma strict_gs_check(on)
 More aggressive heuristics

 Microsoft Visual C++ 2010
 wider scope of protected functions
 optimize away the unneeded security cookies
 disable for specific functions with __declspec(safebuffers)
 choose different level of GS protections through /GS:n:
 /GS:1 VC++ 2005 and 2008
 /GS:2 widened scope (default)

 Microsoft Visual C++ 2011
 Detects range violation

 /SAFESEH
 /GS does not protect exception handler records
 Instead of protection the stack (by putting a cookie before

the return address), modules compiled with this flag will
include a list of all known addresses that can be used as
exception handler functions.

 If an exception occurs, the application will check if the
address in the SEH chain records belongs to the list with
"known" functions, if the address belongs to a module
that was compiled with SafeSEH. If that is not the case,
the application will be terminated without jumping to the
corrupted handler.

 /RTC Runtime error checks
 /RTCs: stack-frame runtime error checking
 /RTCu: variable used before initialization
 /RTCc: value assigned to a smaller data type
 /RTC1 === /RTCsu

 Code is code and data is
data

 Hardware mechanism
widely deployed (every
computer since 2001)

 Enabled by default in all modern compilers

-z,noexecstack, -z,noexecheap /NXCompat

 Address Space Layout Randomization
 The code is loaded in different memory regions each time
 Implemented by the operating system
 To be of any use, you must also have DEP enabled

 But code needs to be “position independant”

 Compiled with

 -fPIE -pie for binaries

 -fPIC for shared libraries.

 By default, Windows® will only juggle system components
around. If you want your image to be moved around by the
operating system (highly recommended), then you should link
with:
 /DYNAMICBASE (since VS 2005 SP1)
 /HIGHENTROPYVA (since VS 2012) uses ASLR with 64 bits

addresses

 It also randomizes the stack

 Restricts the control-flow of an application
to valid execution traces. CFI enforces this property by
monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid
state is detected, an alert is raised, usually terminating the
application.

 CFI detects control-flow hijacking attacks by limiting the
targets of control-flow transfers. In a control-flow hijack
attack an attacker redirects the control-flow of the
application to locations that would not be reached in a
benign execution, e.g., to injected code or to code that is
reused in an alternate context.

 -fsanitize=cfi

 Optimized for performance

 To allow the checks to be implemented efficiently, the
program must be structured such that certain object files are
compiled with CFI enabled, and are statically linked into the
program. This may preclude the use of shared libraries in
some cases.

 -fvisibility=hidden otherwise would disable CFI checks for
classes without visibility attributes

 Control Flow Guard: operates by creating a per-process
bitmap, where a set bit indicates that the address is a valid
destination. Before performing each indirect function call, the
application checks if the destination address is in the bitmap.
If the destination address is not in the bitmap, the program
terminates.

 /guard:cf linker flag (VS2015)

 Requires OS support: Windows 10 or 8.1 U3

 C++ polymorphism vtables

 An attacker could exploit an use-after-free error to hijack
the vtable using heap spraying (80% attacks)

 Detects modifications in the vtable

 Extra entry added to vtable
 ASLR makes this entry’s value unknown to the

attacker

 Check added:
 if vtable[vtguard_vte] != vtguard then

terminate the process

Celement::`vftable´

VirtualMethod1

VirtualMethod2

…

vtguard

 gcc > 4.9
 -fvtable-verify=std
 -fvtable-verify=preinit

 Much more complex implementation by Google team
 Not dependent on ASLR

 https://gcc.gnu.org/wiki/cauldron2012?action=AttachFile
&do=get&target=cmtice.pdf

 RELRO -Wl,-z,relro:
 the ELF sections are reordered so that the ELF internal

data sections (.got, .dtors, etc.) precede the program's
data sections (.data and .bss)

 non-PLT GOT is read-only
 -z,now: tell the dynamic linker to resolve all symbols when

the program is started, or when the shared library is linked
to using dlopen. Improves the effectiveness of RELRO
 the entire GOT is also (re)mapped as read-only

 -ftrapv: Generates traps for signed overflow (may interfere
with UBSAN)

 -mmitigate-rop: Attempt to compile code without
unintended return addresses, making ROP just a little
harder.

 -z,nodlopen and -z,nodump: Might help in reducing an
attacker's ability to load and manipulate a shared object.

 -fomit-frame-pointer: difficults reversing and debugging
 -fstack-check: Prevents the stack-pointer from moving into

another memory region without accessing the stack guard-
page.

 -Wall -Wextra: enables many warnings

 --analyze: performs various analysis of LLVM assembly
code or bytecode and prints the results on standard
output

 /INTEGRITYCHECK places a flag in the binary that instructs
the loader to verify the module's signature at load time.

 /HOTPATCH Enables binary hot patching
 /SDL enables a superset of the baseline security checks

 enables some warnings as errors:
 enables the strict mode of /GS run-time buffer overrun detection,
 performs runtime limited pointer sanitization
 automatically initializes all class members to zero on object

instantiation

 /ANALYZE Enterprise static code analysis (freely available
with Windows SDK for Windows Server 2008 and .NET
Framework 3.5).
See https://randomascii.wordpress.com/2011/10/15/try-analyze-for-free/

 Beware of optimization unstable code!

 Beware of optimization unstable code!

jtsec: Beyond IT Security

c/ Abeto s/n Edificio CEG Oficina 2B

CP 18230 Granada – Atarfe – Spain

hello@jtsec.es

@jtsecES

www.jtsec.es

mailto:hello@jtsec.es

