Mitiéating Overfhlgws using
Defense-in-Depth

What can your compiler do for you?

2018/13/05

Buifier Overilows

#include <string.h>
void foo (char *bar) §

char c[22];

strepy(c, bar); [/ no bounds checking...
}

int main (int argc, char **argv) {
foo(argv([1]);

tsec]

Buifier Overilows

Extreme risk

gets

High risk

L]

strcpy
strcat
sprintf
scanf
sscanft
fscanf
viscanf
vsscanf

streadd

[source:

strecpy

strtrns

realpath

syslog
getenv

getopt

getopt long

getpass

Moderate risk

Dangerous C system calls

getchar
fgetc
getc
read

bcopy

Low risk

« fgets

* memcpy

* snprintf
* strccpy
* strcadd
* strncpy
* strncat

* wvsnprintf

Building secure software, J. Viega & G. McGraw, 2002]

)

D Jtsec

BEYOND IT SEC

@
&

\

Overilows everywnere

d Is possible to program in a correct way?

Code breakthrough delivers safer computing

September 25, 2009

(PhysOrg.com) -- Computer researchers at UNSW and NICTA have achieved a breakthrough in software which
will deliver significant increases in security and reliability and has the potential to be a major commercialisation
success

Professor Gernot Heiser, the John Lions Chair in Computer Science in the School of Computer Science and (7500 / 6) / 5 —_—

Engineering and a senior principal researcher with NICTA, said for the first time a team had been able to prove
with mathematical rigour that an operating-system kemnel - the code at the heart of any computer or

microprocessor - was 100 per cent bug-free and therefore immune to crashes and failures. 2 50 I i n eS/m a n/yea r

The breakthrough has major implications for improving the reliability of critical systems such as medical
machinery, military systems and aircraft, where failure due to a software error could have disastrous results.

“A rule of thumb is that reasonably engineered software has about 10 bugs per thousand lines of code, with
really high quality software you can get that down to maybe one or three bugs per thousand lines of code,”
Professor Heiser said.

Windows has about 50
mills lines of code

“That can mean there are a lot of bugs in a system What we've shown is that it's possible to make the lowest
level the most critical, and in a way the most dangerous part of the system provably fault free "

“| think that's not an exaggeration to say that really opens up a completely new world with respect ta building new
systems that are highly trustworthy, highly secure and safe.”

Verifying the kernel - known as the seL4 microkernel - involved mathematically proving the comrectness of about
7,500 lines of computer code in an project taking an average of six people more than five years.

“The NICTA team has achieved a landmark result which will be a game changer for security-and-safety-critical
software,” Professor Heiser said.

“The verification provides conclusive evidence that bug-free software is possible, and in the future, nothing less
should be considered acceptable where critical assets are at stake ”

@jtsec)

Cost of fixing software ougs

d Is possible to program in a correct way?

Cost of
Fixing
Software
Bugs

Design Development Integration Deployment

@itsec |

The 2pproacnes to @@mg@@@@w security

J Security by correctness

(d Security by isolation @

[Security by obscurity

4 Security by randomization g

)

®)
©
el ©

\

jtsec]

Defence=in-cleptn

d Why choosing?

@itsec)

Mitlgations

d According to the SDL
(d Designed to stop the attacker
d If the countermeasure does not stop the
attacker, it is a vulnerable
countermeasure.

@ (d Designed to slow the attacker

= Microsoft

@ itsec |

Miitigaitlons

] Effective
d Low - effort

(J Can be located at...

@ d ... the compiler
d ... the operating system

1 ... the hardware

@ itsec |

Cormpiler mitigations

Visual
Studio

LLVM / CLANG

@ itsec]

rrrrrrrrrrrrrrr

Saifer function calls @

(d -FORTIFY_SOURCE (buffer overflow detection).

d works by computing the number of bytes that are going
to be copied

d provides buffer overflow checks for the following
functions (and wide character variants):

d memcpy, mempcpy, memmove, memset, strcpy,
stpcpy, strncpy, strcat, strncat, sprintf, vsprintf,
snprintf, vsnprintf, gets.

(argument consistency is checked

Saifer function calls

(d -D_FORTIFY_SOURCE=1 - checks that shouldn't change the

behavior of conforming programs are performed. Checks at
compile-time only.

(d -D_FORTIFY_SOURCE=2 - some more checking is added,
but some conforming programs might fail. Checks at
compile-time and runtime.

Saifer function calls

d Enable warnings:

d -Warray-bounds: Compile time out of bounds checks
d -Wformat=2 -Wformat-security: Format string warnings

@itsec)

Saifer funciion calls m

O /WE4789

 Warns about buffer overrun when specific C run-time
(CRT) functions are used, parameters are passed, and
assignments are performed, such that the data sizes are
known at compile time. This warning is for situations
that might elude typical data-size mismatch detection.
d strcpy, memset, memcpy, wmemcpy

(@]tsec]

Saifer function calls

(d Replace with secure version of the functions

#define CRT SECURE_CPP_OVERLOAD_STANDARD NAMES 1
#define CRT SECURE_CPP_OVERLOAD_STANDARD NAMES_COUNT 1

(@jtsec]

Stack Canaries

(d The compiler place a value before the return address when
a function is called and check that the value has not
changed when the function finalize

J Terminator Canaries
J Random Canaries
(d Random XOR Canaries

CANARY BIRDS WERE
TAKEN INTO THE EARLY
MINES IN CAGES IN ORDER
TO DETECT THE PRESENCE
OF THE ODORLESS AND
LETHAL GAS. CARBON
MONOXIDE

Stack Canaries

(d Deprecated:
d StackGuard
 ProPolice (reorders variables)

-fstack-protector: Buffer size > 8B && functions that call alloc
-fstack-protector-explicit: stack_protect attrb.
-fstack-protector-all: Al ©

-fstack-protector-strong: paranoid conditions

o000

Stack Canaries

(d AddressSanitizer (en gcc desde 4.8)
d -fsanitize=address

A%
 UndefinedBehaviorSanitizer (UBSan)

-fsanitize=undefined All kind of undefined behaviours
-fsanitize=integer undefined or suspicious integer behavior
-fsanitize=nullability While violating nullability does not have
undefined behavior, it is often unintentional
-fsanitize=bounds Detects out-of-bounds access of arrays.
-fsanitize=bounds-strict Enables strict checking

U0 000

d ThreadSanitizer &
d -fsanitize=thread Detects data races M

Stack Canaries

d Microsoft Visual C++ 2003

J /GS Stack-Based Buffer Overrun Detection
O Microsoft Visual C++ 2005 "m"“'"'GS'""':"""'_::'::"“ —
D BUfferS reordering With GS in Visual Studio 2008)

= parameter shadowing - 2y e Y

d Microsoft Visual C++ 2005 SP1 e
d #pragma strict_gs_check(on)
(d More aggressive heuristics

Arguments

@ itsec |

Stack Canaries m

d Microsoft Visual C++ 2010
d wider scope of protected functions
d optimize away the unneeded security cookies
[disable for specific functions with __declspec(safebuffers)
[choose different level of GS protections through /GS:n:
d /GS:1 VC++ 2005 and 2008
d /GS:2 widened scope (default)

J Microsoft Visual C++ 2011
(d Detects range violation

if({{unsigned int)} cch) »= MAX) {

buf[cch] = "\a'; — _ report_rangecheckfailure();
}
buf[cch] = "\a';

@ itsec |

Stack Canaries N

J /SAFESEH

1 /GS does not protect exception handler records

d Instead of protection the stack (by putting a cookie before
the return address), modules compiled with this flag will
include a list of all known addresses that can be used as
exception handler functions.

1 If an exception occurs, the application will check if the
address in the SEH chain records belongs to the list with
"known" functions, if the address belongs to a module
that was compiled with SafeSEH. If that is not the case,
the application will be terminated without jumping to the
corrupted handler.

Stack Canaries m

O
1 /RTC Runtime error checks *ﬁ

d /RTCs: stack-frame runtime error checking
1 /RTCu: variable used before initialization

d /RTCc: value assigned to a smaller data type
d /RTC1 === /RTCsu

@ itsec |

Non-arecutanle stack (DEPR)

d Code is code and data is SEPABA

data 7

d Hardware mechanism
widely deployed (every
computer since 2001)

lzimnegeneraior.net

(@ jtsec]

Non-arecutanle stack (DEPR)

d Enabled by default in all modern compilers

-z,noexecstack, -z,noexecheap /NXCompat

ASLR

(d Address Space Layout Randomization

d The code is loaded in different memory regions each time
d Implemented by the operating system

(d To be of any use, you must also have DEP enabled

(d But code needs to be “position independant”

ASLR

d Compiled with
d -fPIE -pie for binaries

(] -fPIC for shared libraries.

@itsec)

ASLR Dq

d By default, Windows® will only juggle system components
around. If you want your image to be moved around by the
operating system (highly recommended), then you should linl
with:

d /DYNAMICBASE (since VS 2005 SP1)
d /HIGHENTROPYVA (since VS 2012) uses ASLR with 64 bits
addresses

L It also randomizes the stack

Control Flow Intagrity

(J Restricts the control-flow of an application
to valid execution traces. CFl enforces this property by
monitoring the program at runtime and comparing its
state to a set of precomputed valid states. If an invalid
state is detected, an alert is raised, usually terminating the
application.

d CFl detects control-flow hijacking attacks by limiting the
targets of control-flow transfers. In a control-flow hijack
attack an attacker redirects the control-flow of the
application to locations that would not be reached in a
benign execution, e.g., to injected code or to code that is
reused in an alternate context.

@ itsec |

Control Flow Intagrity

O -fsanitize=cfi
d Optimized for performance

(d To allow the checks to be implemented efficiently, the
program must be structured such that certain object files are
compiled with CFl enabled, and are statically linked into the
program. This may preclude the use of shared libraries in
some cases.

O -fvisibility=hidden otherwise would disable CFI checks for
classes without visibility attributes

@itsec)

Control Flow Intagrity N

d Control Flow Guard: operates by creating a per-process
bitmap, where a set bit indicates that the address is a valid
destination. Before performing each indirect function call, the
application checks if the destination address is in the bitmap.
If the destination address is not in the bitmap, the program
terminates.

d /guard:cf linker flag (VS2015)

(Requires OS support: Windows 10 or 8.1 U3

Virtual Tavle Verification

d C++ polymorphism = vtables

d An attacker could exploit an use-after-free error to hijack
the vtable using heap spraying (80% attacks)

J Detects modifications in the vtable

@ itsec |

0

Virtual Table Verification m

Celement:: vftable’

Extra entry added to vtable
ASLR makes this entry’s value unknown to the
attacker

J
J

VirtualMethod1

VirtualMethod2 J Check added:
d if vtable[vtguard_vte] != vtguard then
terminate the process

vtguard

rrrrrrrrrrrrrrr

Virtual Tavle Verification @

d gce>4.9
d -fvtable-verify=std
d -fvtable-verify=preinit

Much more complex implementation by Google team
Not dependent on ASLR

U O

d https://gcc.gnu.org/wiki/cauldron2012?action=AttachFile
&do=get&target=cmtice.pdf

@ itsec |

Other compller options

d RELRO -WI,-z,relro:

d the ELF sections are reordered so that the ELF internal
data sections (.got, .dtors, etc.) precede the program's
data sections (.data and .bss)

d non-PLT GOT is read-only

1 -z,now: tell the dynamic linker to resolve all symbols when
the program is started, or when the shared library is linked
to using dlopen. Improves the effectiveness of RELRO

1 the entire GOT is also (re)mapped as read-only

d -ftrapv: Generates traps for signed overflow (may interfere
with UBSAN)

@ itsec |

Other compller options

d

U O

-mmitigate-rop: Attempt to compile code without
unintended return addresses, making ROP just a little
harder.

-z,nodlopen and -z,nodump: Might help in reducing an
attacker's ability to load and manipulate a shared object.
-fomit-frame-pointer: difficults reversing and debugging
-fstack-check: Prevents the stack-pointer from moving into
another memory region without accessing the stack guard-
page.

-Wall -Wextra: enables many warnings

Other compller options

d --analyze: performs various analysis of LLVM assembly
code or bytecode and prints the results on standard
output

Other compller options

(d /INTEGRITYCHECK places a flag in the binary that instructs
the loader to verify the module's signature at load time.
JHOTPATCH Enables binary hot patching

/SDL enables a superset of the baseline security checks

d enables some warnings as errors:

d enables the strict mode of /GS run-time buffer overrun detection,

d performs runtime limited pointer sanitization

O automatically initializes all class members to zero on object
instantiation

(d /ANALYZE Enterprise static code analysis (freely available

with Windows SDK for Windows Server 2008 and .NET

Framework 3.5).
See https://randomascii.wordpress.com/2011/10/15/try-analyze-for-free/

U O

@itsec)

One last thing

 Beware of optimization unstable code!

void getPassword(void) {
char pwd[64];
if (GetPassword{pwd, sizeof(pwd))) {
/* Checking of password, secure operations, etc. */

}
memset(pwd, @, sizeof(pwd));

}

(@]tsec]

One last thing

 Beware of optimization unstable code!

char *buf = ...;
char *buf_end = ...;
unsigned int len = ...;
if (buf + len >= buf_end)
return; /% len too large */
if (buf + len < buf)
return; /¥ overflow, buf+len wrapped around */
/* write to buf[@®..len-1] */

Figure 1: A pointer overflow check found in several code bases.
The code becomes vulnerable as gee optimizes away the second if
statement [13].

rrrrrrrrrrrrrrr

Contact claia

jtsec: Beyond IT Security
c/ Abeto s/n Edificio CEG Oficina 2B
CP 18230 Granada — Atarfe — Spain

hello@ijtsec.es

@jtsecES

www.jtsec.es

mailto:hello@jtsec.es

